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A two~issipative mechanisms model, associating a Maxwell and an elastoplastic model i~ 
parallel,  is d i s c u s s e d  in order to  account  for the  non- l inear  v iscoelast ic i ty  o f  bulk 
medium-zlensity polyethylene. On the one hand, the experimental determination of the 
constitutive equations coefficients is described from a tensile specimen machined from gas 
pipes. On the other hand, finite-element simulation of the stress relaxation experiment, 
proposed by Sweeney and Ward, is achieved, which yields a complete analysis of the 
dissipative mechanisms interaction during the test. The finite-element code built upon this 
modelling is finally used in a tentative simulation of  a cyclic pressure test on  a pipe 
specimen. 

1. t a ~ M u e t i o n  
N o t i n g  the answer to ~ i v e  loads applied to 
polyethylene structures presents a cr/~cal iam~est in 
a wide field of applicafiom% i~tudmg gas or w a ~  
pipes desigm The key problems are, on the oae broad, 
to describe safisfac~onq~ the co~fimtive equations of 
the mate~mL wMda ~.-mplies ~'ki~g account of 
relaxation, g e o m e t r ~  rer~ve~y and s~An-ra~ 
effeck% and on the other h a ~  to study real s t n ~ m %  
and not only one-dime~om~ tc~/]le 
which requires the a v ~  of ~ume~ca~ t e e ~  
as fn~ite-element codeg proc/di~g an easy access ,~ file 
pm~etions of the coustitutive equalio~s~ 

purpose of t t ~  work was ~ m~rodg~e an al~er- 
native two-me~ham~,,m~s model ~o t ~  Iclassicml a p i ~ -  
aches based on ~ s t k : / t %  such as ~ t  of ~ y  
and Ward [1~, in onter to g/~e an f~marp~,emfion of 
the cyd/c be~aL~o~ of l?o~3r sa~ple~ and to 
derive a e omp~f i on~ l  meff~o~ for' po~ye~ylene 
structure. Professor Ward and r p ~  
e-r a model b a s ~  on a pair of thermagy 
aet~vate~ Ma~we~ me~te~ (l~g~ I) a c ~ m ~ y  r ~  
en~ creep and stress-geli~fion p N ~ o m e ~  for Ng~- 
modi~tus polyethylene fibres. Moreover, ~ a ~  
Ward EI~ dememwated tlie ~we~oNty of ~ a p p ~  
to that: of Lefebwe and Esc~g [2~, ~ ~ a mlk~e 
thermally a~,~dvated Maxwell model  w ~  ' a~ysmg  
the response of o~ented polyethylene ~ r e s  SUbl~.~.  
to a seqtmmm of loading i~ t~o  par~cuCar c ~  

6) The step s m ~  mL~afio~ e x - ~ m ~ t  (~'/,,g. 2~ 
a tempe ' s~dmen  is rap/dly Ioaded ~o a stress 

% + Ae~, wke~re Ae~<<%, and the sWa~a then is I~Ad 
c ~ t  while th~ ~ e s s  fs allowed to decay ~ the 
raise e~0), at wki~:h p~int ~ s i~c~e~  is rap~dty re- 
lo~lle~l ~ the ~ r + AoT, ~md ~ / a ~  a ~ o ~ t  to 
geL-ix, aud so on. The deca~ fim~ betw, een~ the/r and 
(i + I)~_h l~oadmg stop is w~0~am ~ Ate.. The above 
a u r o r a  ~ ~  ~ l t e~  ~ ~ seq~ue~ee of Ah 
i~creases, [trot ~ seqm~ce of  miles Ate-§ ~/A~ tends t o 
OEN~. 

(/~~ The ste~ g e l S .  - ~  ami ~encery ex~2ment  
(F-~g. 3~ tI~ t~r~io~$11~ ~ test is-/~.termpted 
and fo~o~l~ by a rand ~ of ~h~ i m ~ d  strain 
~m~z~ str~s l~eve~ e% is r e ~ h ~  Stres~ mc .~v~  is then 
observe~ ~ the vak~e ~ + A~~ is a ~  where 
a ~ ~ - ~  ~ c,~a~es ~ ~ ~e take again 

om A~ a m l l y 6 ~  stmiy d~hii~ ~ e n ~  I'ed the two 
aut~or~ to more s/mNaar r e m ~  com:emi',~g ~ c e s  
Ah. ~ d  Ah-.§ ~ im the stet~ stress,: ~3a~ ,  ';/on 
exp~Twm~L Tlie L ~  ~ Esc~g th'em, y was in- 
c . o ~  ~ thin ver~ pei~t~. 

We ~ a ~ ~ ~ . . g  a simpM ' .~M~. ~--well 
medal a~d a~ e h ~ ~  medal w ~  ~ a t i c  

, ~  4)~ T~e immcl~ct:iQa of a~ elestophs- 
~c medal  ~ i e k  is ~ o r  by a thmg~ct~& is 
neees~ W ~o a r 1 6 2  for t~e eM~tenee of  resfdual 
st~e~ ~ ema be oN~etrved in po[yeIt~yte~e gas 
pipe~ fi~ ~ ~ .el~toplastic eff~sirre~.s~ent, 
~ e ~  s ~ s e s  sh~,cld ~ l e t e l y  der after some 
ffm~. Tku~, the ~eae~rces' compared w~k the theory 
of  Sweeney a ~  W at~t lies first in substi:turing an 
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Figure 1 The two-proc~ess S~eeney and Ward model. 
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Figure 4 Coefficients of the proposed model. 
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Figure 2 The step ,stress ,relaxa,tion e~per/ment. 
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Figure 3 The sVress relaxation m-~d ~ecovm?y,experiment. 

elastoplastic meehaaai~m ~o a Maxwell one, and sec- 
ond in di~regard~g ~e rma l  acti,vation processes for 
the sake of ~-nr~p,li~iry. Our  theo~ry is inspired from the 
study of ,b~alk ~ediama-xleaesiV ~alyethylene samples 
obtained Lvo~Tn .e, rt_v.uded gas :pii~es. We intended to 
show that, o a  ,zhe one  hand, 2t is consistent with 
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Sweeney and Ward's conclusions concerning the step 
stress relaxation experiment, and the stress relaxation 
and recovery one, and on the other hand, that it 
enables discussion of a step pressure experiment real- 
ized on tube segments, tor which a finite-element simu- 
lation was achieved. But first, we will detail some 
properties of the model and specify a route to identify 
experimentally the coefficients thus introduced. 

2 .  M o d e l  a n a l y s i s  
It }s necessary to describe an experimental procedure 
which enables a unique determination of coefficients 
in order to assert that the model is a reliable and useful 
tool for engineers. Coefficients of a constitutive equa- 
tion provide indeed basic data to compare properties 
.of materials, so testing organization is important. 

Our models introduces five coefficients: modulus, 
Ev, and viscosity; q, for the Maxwell mechanism, 
modulus, Ep, threshold, o~, and a coefficient for kine- 
matic hardening; a, for the elastoplastic mechanism. 
We realized a series of traction-relaxation-geometri-  
cal recovery tests detailed below, in order to evaluate 
these parameters. We used a classical tensile specimen 
(Fig. 5) machined from a gas pipe wall, its main axis 
corresponding to the extrusion direction. Experi- 
mental apparatus consisted, in an Instron press with 
a 500 kg load cell, an RDP transducer with range 
"•  5 mm, and an automatic data acquisition software 
agnes achieved in the LMS and running on a PC. The 

tract ion=relaxation-geometrical  recovery test simul- 
t aneous ly  takes into account strain versus time and 
stress versus time evolutions (Figs 6 and 7), and con- 
sists of three steps: 

(i) choose a strain rate, ~imp, and a strain level, 
~imp, and realize a traction until the selected strain 
value is reached; Crmax denotes the maximmn value of 
stress recorded; 

(ii) hold the strain and allow the stress to relax 
during a period A6eb at the end of which further 
evolution of the stress may be estimated to be negli- 
gible. Note the ultimate value %ira; 

(iii) dismount the specimen from the press without 
removing the displacement captor (some reduction 
of the imposed strain m ay  help) and observe the 



PE tube 
geometrical recovery during a period At~,. So the 
specimen size reduces quickly first, then slowly, and 
stabilizes when Atr~r is large enough, shewing evidence 
of some unrecoverable elongation at r o o m  temper- 
ature, correspondAng to a residual strain, ~ .  
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Figure 5 The tensile specimen and finite-element mesh. 
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Thus described, the test associates ~rm and a,~, to 
e~mp. One remarkable point is that  the use of an initial 
strain rate ten times greater or lower than ii=~ scarcely 
modifies those values but, of course, affects the 
maximal stress recorded, ~ . . . .  at the end of the tensile 
step. We found it convenient,, for our material, to 
conduct the experiment with the values At,~x = 24 h, 
At,,o = 2 4 h  and ~ p  = 0.250x 10-2s  -1, while we 
also tried 0.025 x 10 -2 s-  t without noticeable change. 
Fig. 8 shows the stress versus time. relaxation step for 
both strain rates when elm p = 1 5 % ,  and Fig. 9 the 
following geometrical recovery step. As an example of 
the series of measures to be followed in order to 
identify the coefficients, Fig. 10 shows the stress versus 
time eVolution for various values of e~=p yielding vari- 
ous values of ~ ,  and Fig. 11 is the recovery step with 
values of gres as an issue. Those data enable the draw- 
ing of ( ~ l i m  versus g i m p  c u r v e  and g r e s  versus gimp curves, 
as in Figs 12 and 13, on the basis of which the deter- 
mination of the coefficients is done. 

To retain information from those drawings, one 
must keep in mind that a parallel association of two 
mechanisms simply sums theft individual properties. 
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Figure 6 Stress versus time curve during the three-step experiment 
for different values of ~imp" 

I_ Attic 

I trec [ 

Eimp ,/ 
t / :  res Atre . 

V ii trel 

Time 

Figure 7 Strain versus time curve during the three-step experiment 
for different values of ~=p. 
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Figure 8 Measured stress relaxation over 3 h. 
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Figure 9 Measured geometrical recovery over 24 h. 
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Figure 10 Stress relaxation .oecuring over more  than 1 h fo r / ; i~  = 
0.250x 10 -2 s -a  and (1) ~ ,~  =0.08, (2.) a ~ =  0.115, (3) ~zmp =0.15. 
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Figure 13 er~ versus e ~  curve; (~) experimental and (A) analyti- 
cal data. 
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0.115, (3) Z~m p = 0.08 a~d (4) ~ :~  = ~ 5 .  
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Figure 12 crti m v e r s u s  ~ i m p  curve; (~) ~ x , ~ a m t t ( ~ )  
cal data. 

If the constitutive equation for the Maxwell model  is 

o v = 11 ~v 

= Ev(e --  e~)) {1) 

and for the elastoplastic mech,~rfinm w~th ~_a~r kin- 
ematic hardening (Fig. 14) 

~p = Epa i f r  

o1, = + 

if crp ~> ~ ,  w~h ~ -- 

1656 

__K . . . . .  { 

I 

11 
l 

, i 
/ I 

/ I 

~ffare  t 4  Stress vers~ts strain ~ - v e  for the etastopta~dc mecha- 

~ e  constitutive equation for our  model reads 

= + % (3 )  

Assuming that ~'the mechanisms are independent (this 
l~oint will be discassed late~), the relaxation step and 
the gcometricM ~covery  ,step isolate the elastoplasfie 
mec.h~nisr~ par t  of  the behavioaE after relaxation, this 
very m ~h an i sm  wJthshands the overall stress, and 
after geometrical recovery, the eventual residual strain 
is co~aec*txt to some movement of  the slide. So we 
~ o ~  ~eed ~o try to  identify the % ~  versas ~.~p curve as 
a c'hss~al ,stress-strain curve for a tensile specimen, 
and r it  as the effect of  an elastoplasfic eonsti- 
tm.~ equation in the ease of kinematic ~hardening. 
The  dete,rmrmation of  Ep and ~r~ is then quite usual 
~rom the iaidal slope and the slope chmlge. The coef- 
fi'dent ~t is ded~uced from ,the ~ c o a d  slope by 

- (4 )  
t - - g  

The  ~ v ~  ~ ~:o~r must prove to  be consistent 
w~th the prev io~  one:. ~ ra~ te r  a prom with ~ o r d h ~ t e s  



(l~imp, (itim) and imagine an elastic unloading, i.e. draw 
a segment with slope Ep from this point to the strain 
axis. The point reached indicates the value ~res that 
should be read on the (~imp, er~,) diagram (Fig. 14). 

The determination of Ev and aq is easier now that the 
other coefficients are known. The choice of a simple 
Maxwell model without any thermal activation nat- 
urally leads us to evaluate a relaxation time, z 

1 Ev 
- ( 5 )  

z q 

which is a rough approximation of the physical reality; 
we are aware of this. We deduce that the concept of 
a time-relaxation spectrum captures more precisely 
the complexity of polymer behaviour in this field, see, 
for example, Hadley and Ward [3]. However, this 
assumption retains enough simplicity within our 
model, to complete the investigation of its properties, 
and enable numerical simulations, which was our in- 
itial goal. So let us consider one of the relaxation 
curves and treat it like an exponential stress decay. 

(i = exp ((im,~ -- (into) + (inm (6) 

which yields z when 

(3"max - -  (ilirn 
(3" = ~- (ilim 

e 

Our experimental procedure withdraws much infor- 
mation from the fully relaxed state, which in counter- 
part does not enable an easy determination of Ev 
straight from the measurements. We have to find E~ 
before an evaluation of its value from the recorded 
data, and then refine it with the help of a numerical 
software. 

The previous evaluation is done on the basis of 
a test for which we suppose (iI~m = (i~, and then estimate 

C 
C~m,~ = E~einw + (iv (7) 

which yields an approximation of Ev. If numerical 
simulations of the tensile step of the test are achieved, 
and Ev is allowed to vary slightly, it is possible to fit 
the data satisfactorily and to select the desired value. 
This was achieved with our finite-element code, but 
any software taking into account Equations 1 and 
2 could help in this task. 

Finally, the values of the obtained parameters 
corresponding to our medium-density extruded 
polyethylene a r e  Ep = 175.0 MPa, (i~ = 4.375 MPa, 

= 245.6 MPa, E,, = 65.0 MPa, q = 280.0 GPas. 
One can now observe that our theory quantifies 

both plastic and viscous phenomena, very well known 
in the study of polymers. The elastoplastic model 
appears particularly well adapted to give an account 
of the memory effects of the material. We would like to 
point out that it is difficult to identify the parameters 
of our model just from a tensile test, or a creep test. 
The modelling just attempts to use the total diversity 
of experimental resources to capture the non-linear 
properties of the material. 

To illustrate this, let us briefly discuss the coupling of 
the elastoplastic and the viscous mechanisms. It is 

experimentally evinced by modifying the second step 
of Our procedure and by setting Atrol to zero. So 
when the geometrical recovery phase immediately 
follows the traction, a reduction of the 8~,s 
values recorded is stated. To explain this, one may 
imagine that the chain reorganization occurring dur- 
ing relaxation influences further geometrical evolution 
of the specimen, which reveals some aspects of the 
versatile memory effects of the material [4]. Therefore, 
it is unnecessary to describe the stated coupling with 
an explicit relationship between internal parameters: 
when writing the generalization of Equations 1 and 
2 in order to build a finite-element algorithm, this 
coupling becomes implicit from the equations of 
statics. We expand the details in another paper. 

3. Analytical validation 
Analytical expressions simulating the three-step ex- 
periment discussed in the previous section, can easily 
be derived from Equations 1 and 2. Let us suppose 
that ~imp and eimv are known; then 

(i) the traction step: for the Maxwell mechanism 

(iv = 

elastoplastic mechanism, assuming and for tile 
%/> (i; 

Ee c 
(ip - -  - -  Epgim p -4- - -  (ip (9) 

0t + Ep a + Ep 

thus, w i t h  these  values, (imax = (Iv "~ (ip; 

(ii) relaxation step: the Maxwell mechanism de- 
creases to zero, following 

( i v =  l ] S i m p l e x p ( g v l ; i m p  ~ - - ~ ,  Tl~imp// l l e x p  ( - ~ )  (10) 

and the elastoplastic mechanism is steady, yielding cq~m 

(ilim ~- (ip 

__ U p  r 
Epsim p + (11) ; - ;L.  (Ip 

(iii) recovery step: we must observe that during this 
step the overall stress is zero 

(i = ( iv+(ip = 0 (12) 

At the end of this step, (i, = 0. 
The elastoplastic mechanism unloads elastically 

with a slope Ep, thus residual strain is identified as 

Ep(Simp - -  ~res) = (ilirn (13) 

~res - -  EpSimp - -  ( I ;  (14) 
~ + E p  

Analytical values of (i . . . .  (ilia, eres are estimated from 
the data given in Section 2, and are reported in Figs 12 
and 13, where they compare satisfactorily with experi- 
mental data. 

These expressions have been used to check the accu- 
racy of the numerical results obtained by a prototype 
two-dimensional finite-element code. Our purpose is 
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to validate definitely the code and then compute struc- 
tures such as polyethylene gas pipes. 

4. Step stress relaxation simulation 
In order to illustrate the interest of the modelling and 
the numerical tool, which allows an easy investigation 
of the evolution of a phenomenon through variations 
of the coefficients, we first treat a one-dimensional 
case: the step stress relaxation experiment. We thus 
simulate loading upon an axisymmetric 6 x 1 0 - 2 m  
long rod and 0.5 x 10 -2 m in radius, and only need to 
mesh a rectangle of these dimensions, representing 
a meridian section, with 120 linear rectangular ele- 
ments (Fig. 5). Instructions given to perform the com- 
putat ion are quite close to the experimental practice: 
the operator  specifies c~, Acy, ~imp and leaves the rest to 
the computer. 

We investigate here one conclusion drawn by 
Sweeney and Ward [1] ~rom the experimental study of 
step stress relaxation of high-modulus oriented fibres. 
It  is concerned with the role of each mechanism during 
the test: it is hinted here that, at the beginning, the 
viscous mechanism part  is predominant  in the overall 
stress; then the successive relaxation steps cause this 
part  to decay, while the elastoplastic mechanism com- 
ponent  in the real stress smoothly increases. There is 
a process of transfer of stress between the mechanisms. 

This leads to the simulation for two sets of coeffi- 
cients. 

(i) The first one corresponds to a material asso- 
ciated with the data: Ep = 130.0MPa, cy p = 
7 .05MPa,  ~ = l . 0 6 M P a ,  E ~ = 6 5 . 0 M P a ,  TI= 
280.0 GPas.  

We then chose c~ o = 9.0 M P a  and Acy = 1.0 MPa,  
and ~mp = 0.83 X 10 -2 S -1. In Fig. 15 we state how 
the plastic mechanism will step-by-step hold the im- 
posed value of ~o while the viscous mechanism shows 
a decreasing evolution. Nevertheless, the viscous 
mechanism exhibits a lower contribution to the global 
stress than the elastoplastic one, even from the begin- 

15 

10 
(1) 

]j*,t, i (3) 
' "~, ,.' % ' . ' - +  " .  '+. L ,~. ,% ,~+ 

I n ~ n 

1000 5000 

Time (s) 

Figure 15 First set of coefficients: computed breakdown of the 
stress in the step relaxation experiment: (1) overall stress %z, 
(2) elastoplastic mechanism part, %~z, (3) viscous part eL=. 
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ning of the experiment, which marks a difference with 
the analysis reported below. In our modelling, the 
values of the coefficients definitely influence the ratio 
of the contribution of each mechanism in the apparent  
stress, which will be confirmed by the next example. It  
may be noticed that the ratio Ev/Ep is here close to 0.5. 
Fig. 16 shows the calculated increase of t h e  strain; 
we unfortunately cannot produce any comparative 
measurements, because controlling the evolution of 
the stress between cy o and Acy indeed requires a sophis- 
ticated electronic apparatus. We should remark that 
a real specimen cannot withstand a level of strain 
greater than 0.30 without the occurrence of necking 
- this event is not predicted by the code - and there is 
a limit to the accuracy of the simulation. However, the 
number  of oscillations found appears satisfactory 
compared with what can be evaluated from rough 
experiments. Fig. 17 provides evidence for the three- 
dimensional properties of the modelling: the radial 
components  of the stresses associated with each 

30 
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0 3  

20 

10 

+J 

1000 

I I 

5000 

Time (s) 

Figure 16 First set of coefficients: strain evolution. 
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-1 I I I I 

0 5 

Time (103 s) 

Figure 17 First set of coefficients: radial components, (1) elasto- 
plastic mechanism part %~ and (2) viscous part cy+,. 



mechanism, Cyp~ and cy .... take opposite values, dem- 
onstrating that the numerical computat ion introduces 
non-trivial effects in the plane perpendicular to the 
tensile axis. 

(ii) The second set of coefficients that  we tried was 
partly inspired from Sweeney and Ward's  Table I [1], 
that is, we aimed to simulate some material with 
properties close to high-modulus oriented polyethy- 
lene, although we did not test such a specimen. We 
thus adopted E~ = 28.0 G P a  and Ep = 2 .SGPa  and 
more arbitrarily fixed z~ = 150.7 MPa,  ~ = 1.0 MPa,  
T 1 = 140.0 GPas.  Strain rate is the same as in the first 
case. We also chose Cyo = 170.0MPa and Acy = 
30.0 MPa.  Results in Fig. 18 are consistent with the 
previously reported analysis, i.e. the plastic mecha- 
nism plays the part  of a slow decay-rate mechanism, 
and initially bears lower stress level, while at the end it 
takes the whole overall value. The ratio E, /Ep is here 
11.2, and our model conforms ' t6 the  scheme drawn by 
Sweeney and Ward, on a qualitative point of view. 
Quantitatively, it may seem odd that the simulation 

300 

200 

13.  

o 

lOO 

terminates in a corresponding time of 200 s: this is 
a consequence of some inappropriate choice for 11, but 
we had no experimental data to refine this value. 
Another effect is that the corresponding number  of 
cycles is also lower than could be expected. Fig. 19 
shows the evolution of strain, and indicates eventually 
that the strain level of 10% is not reached during the 
test. This tentative calculation leads us to think that 
a determination of the coefficients for high-density 
polyethylene from the three steps test, may improve 
the results. 

The numerical analysis of the stress relaxation and 
recovery experiment does not settle new technical 
difficulties: it is only needed to substitute a strain 
decay to a strain increase. So we again considered the 
two previous sets of coefficients. In each case, the 
complete stress relaxation test is executed and con- 
tinued with the stress recovery experiment. 

With the first set of coefficients, we chose 
0 . 8 3 x 1 0 - 2 s  -~ as the strain decay rate, cr~ = 
3.0 M P a  and Act1 = 0.5 MPa.  From Figs 20 and 21 

10 

IX. 

5 

.o 

I I I I I I 

0 100 200 3 10 
Time (s) 

Time (103 s) 

Figure 18 Second set of coefficients: computed breakdown of stress 
in the step relaxation experiment: (1) over-all stress cy=, (2) elasto- 
plastic mechanism part ~p=z, (3) viscous part aw~" 
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Figure 19 Second set of coefficients: strain evolution. 
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Figure 20 First set of coefficients: stress relaxation arid recovery. 
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Figure 21 First set of coefficients: strain evolution during stress 
relaxation and recovery. 
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Figure 22 Second set of coefficients: stress relaxation and recovery. 
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Figure 24 The EAHP experiment. 
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Figure 23 Second set of coefficients: strain evolution during stress 
relaxation and recovery. 

we observe the occurrence of a unique cycle. With the 
second set of coefficients, we took 0.16 x 10 .2  s -1 as 
the strain decay rate, ~a = 50 .0MPa and A~a = 
10.0 MPa. This time the number of cycles is more 
important  and the stress stabilizes for a strain level 
close to 2% (Figs 22 and 23). Both calculations have to 
be handled carefully, as no experimental reference can 
be given, even for the number of cycles. 

Incidentally, it should be noted that each simulation 
approximately takes 1 h CPU on a Hewlett-Packard 
420 workstation. 

Finally, we may conclude from all these results that 
our modelling enables practical material testing and 
provides predictive and versatile information concern- 
ing the behaviour of the specimen. 

5. Three-dimensional cyclic experiment 
Superiority of a finite-element software becomes 
evident when we try to analyse successive loading of 
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a real structure. The experiment presented as an 
example is currently being performed by Professor 
Pixa's team at the Ecole d'Application des Hauts 
Polymbres in Strasbourg. Let us consider a portion of 
a polyethylene pipe, about 250 mm long, 20 mm dia- 
meter and 2 mm thick. An extremity of the tube is kept 
fixed and closed. At the other end, a valve enaNes the 
admittance and evacuation of pressurized air. This 
valve electromechanically Controls the opening of 
a fluid reserve bottle so that it is possible to impose on 
the polyethylene pipe any level of pressure within the 
range 0.4-20.0 MPa  and to hold it as long as is neces- 
sary. A thin wire is wound round the specimen and is 
attached to an extensometer in order to record vari- 
ations of the diameter and hence deduce radial strain. 
One test begins by subjecting the tube to a pressure 
level p (reached in a few seconds) and holding it for 
1 minute, then emptying the tube and allowing recov- 
ery for 1 minute: the whole scheme is repeated ten 
times (Fig. 24). For  the ith step A~i denotes the ampli- 
tude between the maximal and minimal strain. The 
difference A~10 - A~2 is denoted A~. When the test is 
repeated with increasing values of p, a At versus 
p curve is drawn. As expected, the tube explodes dur- 
ing the experiment, and this event is announced by 
a strong change in slope of the previous curve. We 
simulated the whole test for a section of a tube in the 
approximation of plane strain. A quarter of the section 
was meshed with 60 rectangular elements. It is pos- 
sible to evaluate the radial strain evolution for some 
values ofp (Fig. 25), and to try to predict the Aa versus 
real wall stress curve (Fig. 26). In the latter, some 
noticeable difference between experimental and 
simulated values are noted at the beginning, but the 
variation of slopes corresponds quite satisfactorily 
around p = 10.0 MPa. Furthermore, from other cal- 
culations, the coefficient of the model responsible for 

c this effect seems to be the threshold crp. The coeffi- 
cients used in this simulation are as follows (the tensile 
specimen is made from a different material): 
Ev = 70.0 MPa, cr~ = 7.05 MPa, a = 25.03 MPa, 
E, = 100.0 MPa, rl = 4.0 GPas. 
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Figure 25 The predicted strain evolution versus time for various 
levels of imposed pressure (1) 1.2 MPa, (2) 0.6 MPa, (3) 0.1 MPa. 

6. Conclusion 
Two dissipative mechanisms models are capable of 
predicting the non-linear viscoelastic behaviour of 
polyethylene. For  medium-density polyethylene, we 
proved that our proposal  associating a Maxwell 
mechanism and an elastoplastic one, was realistic, 
because the coefficients can be identified from a single 
three-step uniaxial test, and was practical because it is 
consistent with literature and enables finite-element 
simulation of real structures. It  is then worthwhile to 
examine the influence of ageing or temperature to 
develop this approach, and to try to expand it to 
a wider set of materials. 
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